13 Mars 2019  |  Environnement
Publié dans La Revue POLYTECHNIQUE 01/2019

L’intelligence artificielle explore la biodiversité des écosystèmes

Des chercheurs de l’Université de Genève ont développé une méthode qui allie la génomique et les outils d’apprentissage automatique pour explorer la biodiversité microbienne des écosystèmes. Ils ont mis au point une approche combinant deux technologies de pointe en se servant d’outils génomiques pour séquencer l’ADN des micro-organismes, puis exploitent cette masse considérable de données grâce à l’intelligence artificielle.

Les micro-organismes remplissent des fonctions clés dans les écosystèmes et leur diversité reflète l’état de santé de leur environnement. Or, ils sont encore largement sous-exploités dans les programmes de biosurveillance actuels, car difficilement identifiables.
Des chercheurs de l’Université de Genève (UNIGE) ont récemment mis au point une approche combinant deux technologies de pointe pour pallier ce manque. Ils se servent d’outils génomiques pour séquencer l’ADN des micro-organismes dans les prélèvements, puis exploitent cette masse considérable de données grâce à l’intelligence artificielle. Ils construisent ainsi des modèles prédictifs capables d’effectuer un diagnostic de santé des écosystèmes à large échelle et d’identifier les espèces qui remplissent des fonctions importantes.
Cette nouvelle approche, publiée dans la revue Trends in Microbiology, permettra d’augmenter considérablement la capacité d’observation d’écosystèmes étendus et de diminuer le temps d’analyse, pour des programmes de biosurveillance de routine beaucoup plus performants.
 
Bioindication par les micro-organismes de l’état de santé des écosystèmes.
 
 
Surveiller l’état de santé des écosystèmes
Surveiller l’état de santé des écosystèmes revêt une importance cruciale dans un contexte de développement durable et de pression croissante exercée par l’être humain sur l’environnement. Différentes espèces de micro-organismes sensibles aux changements qui affectent leur milieu sont utilisées comme bio-indicateurs pour le suivi de la qualité de l’environnement. Or, leur identification morphologique nécessite beaucoup de temps et d’expertise.
«Il y a un an, nous avons pu établir un indice de la qualité de l’eau basé uniquement sur les séquences d’ADN d’algues unicellulaires présentes dans les prélèvements, sans qu’il soit nécessaire d’en identifier visuellement chaque espèce», explique Jan Pawlowski, professeur au Département de génétique et évolution de la Faculté des sciences de l’UNIGE.
 
L’outil génomique insuffisant pour effectuer des diagnostics de santé
Cet outil génomique permet de décrire rapidement et avec une grande précision des communautés biologiques peuplant un environnement. Cependant, une large proportion des données ne peut pas être utilisée pour effectuer des diagnostics de santé des milieux, parce que bon nombre de séquences d’ADN ne sont pas référencées dans les base de données existantes. Les espèces qui détiennent ces séquences demeurent donc inconnues, de même que leur rôle écologique.
 
Dans le laboratoire du Département de génétique et évolution de la Faculté des sciences de l’UNIGE, Tristan Cordier a eu recours à un algorithme d’apprentissage automatique pour exploiter la totalité des données de génomique environnementale.
 
 
Le recours à un algorithme d’apprentissage automatique
«Afin d’exploiter la totalité des données de génomique environnementale, soit l’ensemble de la biodiversité des échantillons, nous avons eu recours à un algorithme d’apprentissage automatique»,déclare Tristan Cordier, membre du groupe genevois et premier auteur de l’étude.
Les biologistes ont utilisé des échantillons de différentes qualités écologiques, allant de bonne à mauvaise, dont ils ont séquencé l’ADN. La combinaison de ces informations leur a permis de constituer un système de référence avec les données de chaque échantillon. Un modèle prédictif a ensuite été élaboré avec cet algorithme, à partir de données d’apprentissage. Celles-ci comprennent les données des diagnostics de référence et celles du séquençage d’espèces inconnues. Ce modèle est affiné et validé au fur et à mesure en incluant de nouveaux échantillons de référence au jeu de données existant.
L’association de ces deux technologies de pointe permet d’obtenir des valeurs écologiques pour les séquences d’ADN, sans devoir les identifier.
 
Découvrir de nouveaux bio-indicateurs
Cette approche permet de découvrir des espèces de micro-organismes – déjà décrites ou non – remplissant des fonctions importantes, ainsi que de nouveaux bio-indicateurs. «Notre recherche partage des points communs avec celle menée sur le microbiome humain. Les deux visent en effet à démêler des communautés microbiennes et à identifier des biomarqueurs pouvant servir de puissants outils de diagnostic pour détecter la pollution environnementale ou des maladies touchant l’être humain», conclut Tristan Cordier.
 
Prof. Jan Pawlowski
Faculté des sciences de l’UNIGE
Tél. 022 379 30 69
Jan.Pawlowski@unige.ch
 
Tristan Cordier
Faculté des sciences de l’UNIGE
Tél. 022 379 30 77
Tristan.Cordier@unige.ch


06 Mai 2019  |  Environnement

Deux contributions qui font froid dans le dos

Le réchauffement climatique et la disparition des espèces qui mettent en danger la survie du genre humain ne font plus guère de doute. Dans le contexte de la mobilisation des étudiants et écoliers du 15 mars dernier et de l’appel réitéré de chercheurs et scientifiques du monde entier, deux articles parus le 21 février dans Le Temps et le lendemain dans Le Monde sont particulièrement angoissants.
15 Mars 2019  |  Environnement

Réchauffement climatique: l’inquiétante leçon du passé

Un réchauffement climatique vieux de 56 millions d’années a entraîné des crues très importantes et bouleversé les paysages, révèle une étude menée dans les Pyrénées par des chercheurs de l’Université de Genève. Leurs conclusions inquiétantes montrent que les risques associés au réchauffement climatique sont bien plus importants que le prévoient les modèles utilisés aujourd’hui par les climatologues.
POLYMEDIA SA | Chemin de la Caroline 26 | 1213 Petit-Lancy | Genève | T: +41 22 879 88 20 | F: +41 22 879 88 25 | info@polymedia.ch